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STABILITY OF THERMOCAPILLARY FLOW

IN A FLAT LAYER WITH ALLOWANCE FOR THE SORET EFFECT

UDC 532.5.013.4:536.24E. A. Ryabitskii

The stability of thermocapillary two-component liquid flow is studied taking into account thermal
diffusion. An explicit expression is obtained to construct neutral Marangoni numbers under the as-
sumption of monotonicity of perturbations. The thermocapillary and hydrodynamic instability mech-
anisms are considered. It is shown that plane perturbations are the greatest hazard to the stability of
return flow.
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In studies of the thermocapillary effect on the behavior of a free-surface liquid in heat- and mass-transfer
problems, emphasis is usually placed on the conditions under which the liquid becomes unstable and motion sets in
[1–4]. The stability of similar motions induced by thermocapillary forces has been studied less extensively. Research
in this direction was started in [5] and continued in [6, 7]. These papers studied the stability of thermocapillary
flow of a flat homogeneous liquid layer under a longitudinal temperature gradient. Two solutions — linear and
quadratic — were obtained and analyzed for stability under the assumptions of a rigid [6] and a deformed [7] free
surface.

In the present paper, the stability of thermocapillary two-component liquid flow with a rigid free boundary
is studied taking into account thermal diffusion (the Soret effect).

1. We consider a flat layer of a heat-conducting viscous liquid in the absence of mass forces. Let surfactants
with a surface concentration Γ(t, x, y) be concentrated at the free surface. The Navier–Stokes equation and the
heat-convection and impurity-concentration equations taking into account thermal diffusion are written as

du

dt
+

1
ρ
∇p = ν∆u, div u = 0,

dθ

dt
= χ∆θ,

dc

dt
= D∆

(
c +

kT

θm
θ
)
.

(1.1)

Here u = (u, v, w) is the liquid velocity, p is the pressure, θ is the temperature, c is the impurity concentration,
ν and χ are the kinetic viscosity and thermal diffusivity, respectively, ρ is the density, D is the diffusion coefficient,
kT D is the thermal-diffusion coefficient, and θm is a certain average temperature.

We assume that transfer processes in the gas outside the liquid can be ignored. Let p1 and θ1 be the specified
pressure and temperature of the gas on the free surface L. Then, on L, the following conditions should be satisfied:

(p1 − p)In + 2ρνD(u) = 2σHn + ∇τσ,

λ
∂θ

∂n
+ β(θ − θ1) + Q = 0, ft + u∇f = 0.

(1.2)

Here n is the outward normal vector to L, H is the average free-surface curvature, I is the unit tensor, ∇τ

= ∇− (n∇)n is the surface gradient, λ and β are the thermal conductivity and the interfacial heat-transfer factor,
Q is the heat flux through the free surface, and f(x, t) = 0 is the free-surface equation L.
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We assume that there is no mass flux through the rigid surface and the velocity and impurity concentration
are subjected to the constraints

u = 0,
∂c

∂n
+

kT

θm

∂θ

∂n
= 0. (1.3)

Let the surface-tension variation depends linearly on the temperature and surfactant concentration:

σ = σ0 − æ(θ − θ0) − γ(Γ − Γ0).

We place the coordinate origin on the solid surface so that the x and y axes are directed horizontally and
the z axis is directed vertically upward. The equations for the solid and free boundaries are z = 0 and z = l,
respectively. The transfer of the surfactant along the free boundary is described by the equation

∂Γ
∂t

+
∂

∂x
(uΓ) +

∂

∂y
(vΓ) − Ds

(∂2Γ
∂x2

+
∂2Γ
∂y2

)
= jn, (1.4)

where u and v are the liquid velocity components on the surface, Ds is the surface-diffusion coefficient of the
surfactant, and jn is the mass flux from the surface into the bulk.

The flux jn is determined by the surfactant transfer into the liquid, and taking into account thermal diffusion,
it is written as

jn = −D
(∂c

∂z
+

kT

θm

∂θ

∂z

)
(z = l). (1.5)

Here c is the concentration of the dissolved surfactant in the liquid.
On the other hand, the mass transfer between the surface and the liquid occurs by adsorption and desorption

and the flux is given by

jn = KAc − KDΓ (z = l), (1.6)

where KA and KD are the adsorption and desorption coefficients, respectively.
Let a constant surfactant concentration Γ = Γ0 be specified on the free surface. We consider the case where

along the free boundary there is a temperature gradient θx

∣∣∣
z=l

= −A.

We perform nondimensionalization. As the characteristic quantities we use Aν/χ for the temperature,
ν/l for the velocity, ρν2/l2 for the pressure, l for the length, l2/ν for time, Γ0 for the surfactant concentration, and
KDΓ0/KA for the impurity concentration.

The solution of problem (1.1)–(1.6) is sought in the form

u = u(ξ), v = w = 0, θ = θ(x, ξ), c = c(ξ), Γ = Γ0.

Then, the equations of motion become

−px + uξξ = 0, −py = 0, −pξ = 0,

Pr−1θξξ = uθx, cξξ + Sr (θxx + θξξ) = 0;
(1.7)

ξ = 0: u = 0, θξ = 0, cξ = 0; (1.8)

ξ = 1: uξ = −Mθx, p − p1 = 0, θξ + Bi (θ − θ1) + Q = 0, cξ + Sr θξ = 0, cξ + Sr θξ = −D2(c − Γ), (1.9)

where

ξ =
z

l
, Pr =

ν

χ
, D0 =

Ds

ν
, M =

æAl2

ρνχ
, Bi =

βl

λ
,

Mc =
γΓ0l

ρν2
, Sc =

ν

D
, Sr =

kT KAν

KDΓ0χ
, D1 =

DlKD

KAν
, D2 =

lKA

D
.

Here Pr is the Prandtl number, M is the Marangoni number, Bi is the Biot number, Mc is the Marangoni concen-
tration number, Sc is the Schmidt number, Sr is the Soret number, and x and y are dimensionless coordinates.
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The solution of problem (1.7)–(1.9) that satisfies the closed flow condition is written as

u0 =
MPr−1

2

(3
2

ξ2 − ξ
)
, p0x =

3
2

MPr−1,

θ0 = −MPr−1

12

(3ξ4 + 1
4

− ξ3
)
− xPr−1, c0 =

SrMPr−1

12

(3ξ4 + 1
4

− ξ3
)

+ Γ0.

(1.10)

System (1.7)–(1.9) also has a shear (Couette) solution but it is not considered here.
We study the stability of the quadratic or (as it is called) return flow (1.10). In the absence of surfactants

and volume concentration, the stability of an analog of solution (1.10) is studied in [6].
In the following, we restrict ourselves to only thermocapillary Instability, ignoring surface waves. The free

surface is considered rigid.
We seek a solution of problem (1.1)–(1.6) in the form u = u0 + U , v = V , w = W , p = p0 + P , θ = θ0 + T ,

c = c0+S, and Γ = Γ0+G. Here U , V , and W is the velocity perturbations, P is the pressure, T is the temperature,
S is the volume concentration, and G is the surface concentration. We assume that the perturbed quantities have
the form

(U, V, W, P, T, S, G) = (U(ξ), V (ξ), W (ξ), P (ξ), T (ξ), S(ξ), G) exp [i(αx + βy − Cτ)], (1.11)

where α and β are the wave numbers in the x and y directions, respectively, τ is dimensionless time, and
C = Cr + iCi is the complex decrement.

Substitution of (1.11) into Eqs. (1.1)–(1.6) yields the following system of equations for the perturbations [8]

Uξξ + a1U = iαP + u0ξW, Vξξ + a1V = iβP, Wξξ + a1W = Pξ,

iαU + iβV + Wξ = 0, Tξξ + a2T = Prθ0xU + Prθ0ξW, (1.12)

Sξξ + a3T = ScC0ξW − Sr (Tξξ − (α2 + β2)T ),

where a1 = −(α2 + β2) − iαu0 + iC, a2 = −(α2 + β2) − iαPru0 + iPrC, a3 = −(α2 + β2) − iαScu0 + iScC,

ξ = 0: U = V = W = Tξ = Sξ = 0; (1.13)

ξ = 1: Uξ + iαW = −iαMT − iαMcG, Vξ + iβW = −iβMT − iβMcG,

W = 0, Tξ + BiT = 0,
(1.14)

[−iC + D0(α2 + β2) + iαu0]G + iαU + iβV = −D1(Sξ + SrTξ),

Sξ + SrTξ = −D2(S − G).

2. Let us consider the case of monotonic perturbations (Cr = 0). We assume that the perturbations are
plane (α = 0) and restrict ourselves to constructing the neutral curves (Ci = 0).

In this case, problem (1.11)–(1.13) is considerably simplified and becomes

Uξξ − β2U = u0ξW, Vξξ − β2V = iβP,

Wξξ − β2W = Prξ, iβV + Wξ = 0,

Tξξ − β2T = Prθ0xU + Prθ0ξW,
(2.1)

Sξξ − β2S = (ScC0ξ − Sr Prθ0ξ)W − SrPrθ0xU ;

ξ = 0: U = V = W = Tξ = Sξ = 0; (2.2)

ξ = 1: Uξ = 0, W = 0, Vξ = −iβMT − iβMcG, Tξ + BiT = 0,

D0β
2G + iβV = −D1(Sξ + Sr Tξ), Sξ + Sr Tξ = −D2(S − G).

(2.3)

687



Solving system (2.1) subject to boundary conditions (2.2) and (2.3), we obtain the equation whose solution
gives an explicit expression for the neutral Marangoni numbers in the case of plane monotonic perturbations:

M2
{
− A1

32Prβ3
− A2

32β
+

cosh β

β sinh β + Bi cosh β

[ 1
16Prβ2

(
A3 +

Bi
2β

A1

)
+

1
8β

(
A4 +

Bi
4

A2

)]

− A5
β

β sinh β + Bi cosh β

}
+ M

{
− McD1D2 Sr

A6
A7 − D1D2 cosh βMc

βA6

[ Srβ sinh β

β sinh β + Bi cosh β

×
( 1

16Prβ2

(
A3 +

Bi
2β

A1

)
+

1
8β

(
A4 +

Bi
4

A2

))
+

Sr Sc
8Prβ

A4

]
− A5

D1D2 Bi Mc cosh β Sr
A6(β sinh β + Bi cosh β)

+
D1D2Mc sinh β Sr

A6

( 1
32Prβ3

A1 +
1 + ScPr−1

32β
A2

)}

+
1
β2

(
cosh β − β

sinh β

)
+

Mc(β sinh β + D2 cosh β)
2βA6

( sinh β

β
− β

sinh β

)
= 0, (2.4)

where

A1 = −15 cosh β

2β3
− 5 sinh β

6
+

15 cosh 2 β

2β2 sinh β
+

2 + cosh 2 β

sinh β
− 8 sinh β

β2
;

A2 =
3 cosh β

β5
+

cosh β

15β
− 3

β4 sinh β
+

1
10 sinh β

− 1
2β2 sinh β

;

A3 = −15 cosh β

4β4
+

sinh β

4β3
+

cosh β

12
+

β sinh β

12
+

7 cosh β

4β2
+

9
4β3 sinh β

− β sinh 2 β

12 sinh β

+
1

4β sinh β
+

1
β sinh β

+
3 cosh 2 β

2β3 sinh β
+

1
cosh β

− 2 sinh 2 β

β2 cosh β
− 7 sinh β

2β3
;

A4 =
3 cosh β

4β5
+

sinh β

60
− 3

4β4 sinh β
+

cosh β

4β3
+

cosh β

4β3
− 3

8β2 sinh β
;

A5 =
1

16Prβ3

(
− 15

4β4
+

15 cosh β

4β3 sinh β
− 3

2β2
+

1
β sinh β cosh β

− 2 sinh β

β3 cosh β

)
+

1
8β2

( 3
4β5

− 3 cosh β

4β4 sinh β
+

5
8β3

)
;

A6 = (D0β
2 + D1D2) sinh β + D2D0β cosh β;

A7 =
1

16Prβ3

(
− 15

4β4
+

15 cosh β

4β3 sinh β
− 3

2β2
+

1
β sinh β cosh β

− 2 sinh β

β3 cosh β

)
− 1

8β2

(
1+

Sc
Pr

)( 3
4β5

− 3 cosh β

4β4 sinh β
+

5
8β3

)
.

Equation (2.4) is quadratic in the Marangoni number; therefore, in the plane case there are two neutral
curves that describe the flow stability boundary for monotonic perturbations.

3. Problem (1.12)–(1.14) is solved numerically for arbitrary perturbations using the orthogonalization
method. The analytically obtained neutral curves for monotonic perturbations are used as tests in the calcula-
tions. In addition, the solutions of Eq. (2.4) serve as initial approximations in the calculations of three-dimensional
perturbations.

The existence of Eq. (2.4) implies that the presence of impurities in the liquid leads to instability with respect
to monotonic perturbations in the plane case, too (α = 0). In the absence of impurities, such instability for the
return flow is not observed [6]. Typical neutral curves (curves 1 and 2) for monotonic perturbations are plotted in
Fig. 1 for D0 = 10−4, D1 = 30, D2 = 103, Sr = 10, Sc = 10, Mc = 5, Bi = 0, and Pr = 0.016. According to [6], the
perturbations corresponding to these neutral curves are induced by the thermocapillary instability mechanism due
to nonuniform heating of the free surface and are stationary longitudinal rolls whose axes are directed downstream.
The region of instability is between the neutral curves.

In addition, instability of the main flow can arise from the hydrodynamic perturbations due to motion in the
liquid. Such perturbations are manifested as waves which propagate in both directions perpendicular to the main
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Fig. 1. Neutral curves for plane perturbations for α = 0.

M
1/4

2

4

2 31 40
p
a

2

1

Fig. 2. Neutral curves for volume perturbations for β = 0.3.
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Fig. 3. Neutral curves for volume perturbations for β = 2.
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flow. The neutral curve corresponding to hydromagnetic instability for α = 0 is also given in Fig. 1 (curve 3). In
contrast to the thermocapillary mode, the hydrodynamic perturbations grow in an oscillatory manner. The region
of instability is below the neutral curve. Thus, the flow stability boundary with respect to plane perturbations is
described by curve 1.

Let us consider volume perturbations. Figures 2 and 3 give cross sections of the neutral surfaces for β = 0.3
and β = 2, respectively, for thermocapillary (curve 1) and hydrodynamic (curve 2) perturbations. The values of
the remaining parameters are the same as in Fig. 1. The lower edge of the given neutral curves for thermocapillary
perturbations for α = 0 coincides with curve 1 in Fig. 1, and the upper edge with curve 2 in Fig. 1. We note that for
α = 0, the thermocapillary perturbations cease to be monotonic and become oscillating. The region of instability
in Figs. 2 and 3 is inside the neutral curve 1 and is lower than curve 2. As the wave number β increases, the
region of instability for thermocapillary perturbations is shifted toward large Marangoni numbers. In this case, the
region of instability increases insignificantly on the α axis and the motion is always stable against short-wavelength
perturbations. Hydrodynamic perturbations play a leading role in flow instability only in the region of relatively long
waves. In the remaining range of wavenumbers, the stability boundary is described by curve 1, which corresponds
to thermocapillary perturbations. The calculation results given in the figures show that the plane perturbations at
a wavenumber α = 0 are the most dangerous for the stability of the return motion (1.10).

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00234) and the
foundation “Leading Scientific Schools of Russia” (Grant No. NSh-902.2003.1).

REFERENCES

1. J. R. A. Pearson, “On convection cells induced by surface tension,” J. Fluid Mech., 5, No. 4, 489–500 (1958).
2. J. C. Berg and A. Acrivos, “The effect of surface active agents on convection cells induced by surface tension,”

Chem. Eng. Sci., 20, No. 8, 737–745 (1965).
3. H. J. Palmer and J. C. Berg, “Hydrodynamic stability of surfactant solutions heated from below,” J. Fluid Mech.,

51, Part 2, 385–402 (1972).
4. E. A. Ryabitskii, “Occurrence of thermocapillary motion in a flat layer with allowance for the Soret effect,” Izv.

Ross. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 3, 3–9 (2000).
5. B. N. Goncharenko and A. L. Urintsev, “Stability of motion caused by thermocapillary forces,” J. Appl. Mech.

Tech. Phys., No. 6, 94–98 (1977).
6. M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective insta-

bilities,” J. Fluid Mech., 132, No. 7, 119–144 (1983).
7. M. K. Smith and S. H. Davis, “Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface wave

instabilities,” ibid., pp. 145–162.
8. V. K. Andreev, V. E. Zakhvataev, and E. A. Ryabitskii, Thermocapillary Instability [in Russian], Nauka, Novosi-

birsk (2000).

690



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


